skrypt neuro

 0    174 Fiche    chomikmimi
скачать mp3 басу ойын өзіңді тексер
 
сұрақ język polski жауап język polski
Kanały jonowe​ (białka)
оқуды бастаңыз
dwa stany: otwarte i zamknięte. Na te stany wpływa konfiguracja łańcuchów białkowych.
Bramki​
оқуды бастаңыз
są fragmentami łańcucha białka kanałowego. Ich konformacja zmienia się pod wpływem bodźca
Kanał sodowy
оқуды бастаңыз
bramka aktywacyjna i inaktywacyjna (kanał jest przepuszczalny gdy obie są otwarte)
Kanał potasowy
оқуды бастаңыз
tylko jedna bramka (zamknięta przy pot. spoczynkowym)
Mechaniczne kanały jonowe
оқуды бастаңыз
- związane z mechanicznym odkształceniem łańcuchów białkowych np. w komórkach rzęskowatych ucha wewnętrznego.
Ligandozależne
оқуды бастаңыз
np. kanały wyciekowe
Kanały bramkowane cyklicznymi nukleotydami
оқуды бастаңыз
np. kanały kationowe w czopkach i pręcikach siatkówki Kanały wyciekowe - ich stan może być regulowany m. in cyklicznymi nukleotydami, tlenem cząsteczkowych, neuroprzekaźnikami.
Pompy jonowe
оқуды бастаңыз
Wpływają na ​aktywny transport​ jonów. Są ​ATP-azami. W wyniku aktywności pompy zmniejsza się stężenie jonów sodowych w cytoplazmie, a zwiększa stężenie jonów potasowych
Przy każdym obrocie pompy
оқуды бастаңыз
​2x K+ do wnętrza i 3x Na+ na zewnątrz​. Powoduje to zwiększenie ujemnego ładunku wnętrza komórki - ​pompa działa elektrogennie​.
Pompa posiada także
оқуды бастаңыз
pośredni udział w regulacji bilansu wodnego. Intensywność pracy może być modulowana przez zmianę gradientu stężeń jonów.
Potencjał spoczynkowy
оқуды бастаңыз
​ to taki potencjał bł. kom. na którą nie działa żaden bodziec i nie ma efektów działania na nią poprzedniego bodźca, a także nie wykazuje spontanicznej aktywności elektrycznej
Potencjał spoczynkowy ma ​wartość
оқуды бастаңыз
jemną​ i jest ​wynikiem różnicy w liczbie ładunków elektrycznych między wewn. a zewn​. W neuronach i komórkach mięśniowych wartość zawiera się zwykle między -40, a -90 mV.
Potencjal spoczynkowy powstaje
оқуды бастаңыз
w wyniku obecności we wnętrzu komórki ​dużych anionów organicznych​ i ​aktywności pompy sodowo-potasowej​, jest ​stabilizowany​ dzięki prądom jonowym przepływającym przez ​kanały wyciekowe​, a zwłaszcza przez prąd potasowy
Bardzo ważnym elementem genezy potencjału spoczynkowego jest
оқуды бастаңыз
​aktywność pompy​ sodowo potasowej​ i obecnosc anionow organicznych we wnetrzu komorki
W błonie komórki nerwowej ​najwięcej​ jest
оқуды бастаңыз
​potasowych kanałów wyciekowych​, przez co w stanie spoczynku​ ​przepuszczalność​ jest największa dla jonów ​K+​ (ok. 25 razy większa niż dla Na+). Siła chemiczna dla K+ - zwrot odkomórkowy, siła elektrostatyczna - zwrot dokomórkowy
Potencjal rownowagi W stałej temperaturze ​zależy w
оқуды бастаңыз
sposób logarytmiczny tylko od stosunku zewnętrznego stężenia jonów do ich stężenia wewnętrznego
Ze względu na występowanie w błonie potasowych kanałów wyciekowych zmiana potencjału spoczynkowego, która ​zwiększy różnice​ między potencjałem błony, a potencjałem równowagi jonu potasu​, będzie powodowała
оқуды бастаңыз
zwiększenie prądu potasowego​. Prąd ten będzie powodował przywrócenie potencjału błony do wartości jak najbliższej potencjałowi równowagi dla K+.
*Równanie Goldmana
оқуды бастаңыз
pozwala ustalić ​wartość potencjału błony​ komórkowej na podstawie stężeń i przepuszczalności błony. Równanie to pokazuje, że​ im mniejsza przepuszczalność błony dla danego jony, tym mniejszy wpływ jego gradientu na wartość potencjału błony
Energia zmagazynowana w postaci potencjału spoczynkowego błony jest źródłe
оқуды бастаңыз
wzmocnienia odpowiedzi komórki na bodźce powodujące otwieranie kanałów jonowych.
Prąd potasowy przez kanały wyciekowe zawsze dąży do
оқуды бастаңыз
wyrównania potencjału błony z potencjałem równowagowym dla jonu potasu​ (który jest bliski potencjału spoczynkowego)
Podczas potencjału spoczynkowego ​bramka ​inaktywacyjna​ kanałów ​sodowych​
оқуды бастаңыз
bramkowanych napięciem jest​ ​otwarta​, a ​bramka aktywacyjna zamknięta​.
Kanały wyciekowe​ powodują że
оқуды бастаңыз
jony mogą przemieszczać się w poprzek błony, a tym samym mogą modulować stan polaryzacji błony. Kanały wyciekowe charakteryzują się dużą selektywnością
W błonie najwięcej jest
оқуды бастаңыз
​potasowych kanałów wyciekowych​ przez co przepuszczalność błony w stanie spoczynku jest większa dla jonów potasu (ok. 25 razy niż dla Na). W związku z tym jony potasu w największym stopniu wpływają na wartość potencjału spoczynkoweg
Wartość potencjału spoczynkowego jest zwykle bardzo zbliżona do
оқуды бастаңыз
wartości potencjału równowagi dla jonów potasowych.
Potencjal lokalny jest przewodzony
оқуды бастаңыз
​Jest przewodzony we wszystkich kierunkach​ pod błoną jako cytoplazmatyczny prąd jonowy. Jest przewodzony ze stratą amplitudy - dekrementem​.
Zaburzenie potencjału spoczynkowego prowadzi d
оқуды бастаңыз
​otwarcia kanałów jonowych mechanicznych i ligandozależnych​ i ​przepływu prądu jonowego​.
Depolaryzacja​
оқуды бастаңыз
wzrost potencjału błony powyżej potencjału spoczynkowego. Wynika z ​napływów jonów sodu​ przez napięciozależne kanały sodowe. Prąd sodowy spowoduje dalszą depolaryzację błony komórkowej
Potencjał czynnościowy
оқуды бастаңыз
jest przejściową zmianą potencjału błony związaną z przekazywaniem informacji. Miejscem jego powstania jest zwykle wzgórek aksonalny lub cieśń węzła.
​napływów jonów sodu​ przez napięciozależne kanały sodowe; Napływ ten jest ​nasilany przez
оқуды бастаңыз
odkomórkowy prąd potasowy
Prąd potasowy w początkowej fazie procesu odbywa się głównie przez
оқуды бастаңыз
​kanały wyciekowe​, a w późniejszej fazie także przez ​aksonalne potencjałozależne kanały potasowe​, których bramka otwiera się później niż bramka aktywacyjna kanałów sodowych.
Zmiana potencjału błony w kierunku depolaryzacji powoduje uruchomienie dwóch procesow
оқуды бастаңыз
szybkiego otwierania się bramki aktywacyjnej ​oraz​ powolnego zamykania bramki inaktywacyjnej​. Jest to mechanizm ograniczający czas otwarcia kanału sodowego​, który jest ważny dla prawidłowego przebiegu potencjału czynnościoweg
Pod wpływem depolaryzacji ​bramka kanału potasowego
оқуды бастаңыз
otwiera się później niż bramka kanału sodowego
Jeżeli po depolaryzacji nastąpi powrót wartości potencjału błony do stanu spoczynkowego, to bramka aktywacyjna
оқуды бастаңыз
szybko się zamyka, a inaktywacyjna powoli otwiera. Mechanizm ograniczający czas otwarcia kanału sodowego jest ważny dla prawidłowego przebiegu potencjału czynnościowego.
Sprzężenie zwrotne dodatnie​,
оқуды бастаңыз
pojawiające się w początkowej fazie potencjału czynnościowego, nazywane jest ​cyklem Hodkin
Wzgórek aksonalny =
оқуды бастаңыз
wzgórek inicjacyjny​ - miejsce dużej gęstości ​potencjałozależnych kanałów jonowych​. Jest to początkowa część aksonu, przylegająca bezpośrednio do ciała komórki
Wzgorek aksonalny to...
оқуды бастаңыз
Jest to także pierwszy odcinek aksonu do którego dociera potencjał lokalny powstający w dendrycie lub ciele komówki.
W szczytowym momencie ​odwrotnej depolaryzacji​
оқуды бастаңыз
zamykają się bramki inaktywacyjne kanałów sodowych, a otwierają bramki kanałów potasowych. Szybko zmniejsza się przepuszczalność błony dla jonów Na+, a jony ​K+​ gwałtownie przemieszczają się ​na zewnątrz ​pod wpływem wysokiej siły elektrochemicznej
zamykają się bramki inak kanałów na, a otwierają bramki kanałów potasowych. Szybko zmniejsza się przepuszczalność błony dla jonów Na+, a jony ​K+​ gwałtownie przemieszczają się ​na zewnątrz ​pod wpływem wysokiej siły elektrochemicznej po tym
оқуды бастаңыз
Rozpoczyna się ​faza schodząca potencjału czynnościowego​.
Rozpoczyna się ​faza schodząca potencjału czynnościowego​.
оқуды бастаңыз
Na początku tej fazy wypływające z komórki jony K+ powodują depolaryzację błony (z +30 mV do 0 mV), a następnie utrzymujący się odkomórkowy prąd K+ powoduje repolaryzację błony wynikającą ze zwiększającej się przewagi ładunku ujemnego wewnątrz komórki
Repolaryzacja​
оқуды бастаңыз
obniżenie potencjału błony do wartości potencjału spoczynkowego. Wynika z ruchu jonów potasu na zewnątrz przez napięciozależne kanały potasowe
Hiperpolaryzacja​
оқуды бастаңыз
jest to spadek potencjału błony poniżej wartości potencjału spoczynkowego, przez nadmierne ​ucieczki jonów potasu przez potencjałozależne kanały potasowe​.
Po opóźnionym zamknięciu kanałów potasowych hiperpolaryzacja przechodzi w
оқуды бастаңыз
potencjał spoczynkowy dzięki mechanizmom wpływającym na stabilizację potencjału spoczynkowego.
hiperpolaryzacja wystepuje
оқуды бастаңыз
Występuje, ponieważ potencjał równowagi​ dla jonów K+ jest ​bardziej ujemny niż potencjał spoczynkowy​.
Po opóźnionym zamknięciu kanałów potasowych hiperpolaryzacja przechodzi w
оқуды бастаңыз
potencjał spoczynkowy dzięki mechanizmom wpływającym na stabilizację potencjału spoczynkowego.
Nadstrzal
оқуды бастаңыз
Fragment przebiegu potencjału czynnościowego, w czasie którego błona ma dodatni ładunek po stronie wewnątrzkomórkowej, jest nazywany ​nadstrzałem​
bodziec progowy powoduje
оқуды бастаңыз
powstanie jednego potencjału czynnościowego
bodziec nadprogowy zgodnie z tym schematem spowoduje powstanie
оқуды бастаңыз
kilku potencjałów czynnościowych i im będzie silniejszy bodziec nadprogowy tym ta seria będzie większa;
W komórkach które spontanicznie generują potencjał czynnościowy
оқуды бастаңыз
nie występuje stabilny potencjał spoczynkowy (np ​neuronu jądra nadskrzyżowaniowego w podwzgórzu, komórki węzła zatokowo-przedsionkowego w sercu​)
W komórkach które spontanicznie generują potencjał czynnościowy nie występuje stabilny potencjał spoczynkowy tylko
оқуды бастаңыз
Jest on zastąpiony stałą powolną spoczynkową depolaryzacją, zwaną ​potencjałem generującym rytm​.
PSD. Gdy endogennie generowana depolaryzacja
оқуды бастаңыз
osiągnie wartość progową powstaje potencjał czynnościowy, po którego zakończeniu ponownie jest uruchamiany mechanizm potencjału generującego ryt
Refrakcja bezwzględna
оқуды бастаңыз
występuje po powstaniu potencjału czynnościowego.​ ​Stan całkowitego braku pobudliwości fragmentu błony komórkowej, żaden bodziec nie jest w stanie wzbudzić potencjału czynnościowego: ani progowy, ani nadprogowy
Refrakcja bezwzględna Przypada na okres
оқуды бастаңыз
​depolaryzacji​ i do ​2/3 repolaryzacji (az do otwierania sie bramek inaktywacyjnych kanalow sodowych bramkowanych napieciem)
Refrakcja bezwzględna jej mechanizm jest zwiazany z
оқуды бастаңыз
​zamykaniem bramek inaktywacyjnych kanałów sodowych​ ​na szczycie potencjału czynnościowego.
Refrakcja bezwgledna Czynnikiem, który powoduje zamknięcie się bramki inaktywacyjnej, jest
оқуды бастаңыз
depolaryzacja i dopiero po powrocie potencjału błony do wartości zbliżonej spoczynkowej bramki inaktywacyjne zaczynają powracać do stanu otwartego
depolaryzacja i dopiero po powrocie potencjału błony do wartości zbliżonej spoczynkowej bramki inaktywacyjne zaczynają powracać do stanu otwartego efekt
оқуды бастаңыз
Nie spowoduje to otwarcie kanału sodowego (w tym czasie szybka bramka aktywacyjna jest już zamknięta), lecz przywraca zdolność kanału do odpowiedzi na depolaryzację.
Refrakcja względna
оқуды бастаңыз
stan obniżonej pobudliwości fragmentu błony komórkowej, tylko bodziec nadprogowy jest wstanie wzbudzić potencjał czynnościowy, bodziec progowy staje się bodźcem podprogowym
Refrakcja względna rozpoczyna sie
оқуды бастаңыз
po zakończeniu refrakcji bezwzględnej, czyli od 2/3 repolaryzacji -​ od otwierania się bramek inaktywacyjnych kanałów sodowych bramkowanych napięciem, aż do osiągnięcia przez błonę potencjału spoczynkowego
Podczas refrakcji względnej populacja kanałów sodowych bramkowanych napięciem z otwartą bramką inaktywacyjną jest
оқуды бастаңыз
mniejsza niż podczas potencjału spoczynkowego, jednak ich liczba zwiększa się w czasie.
Na początku refrakcji względnej populacja funkcjonalnie czynnych kanałów sodowych jest
оқуды бастаңыз
jest mniejsza niż w stanie spoczynkowym, ponieważ część z nich nie została jeszcze aktywowana po refrakcji bezwzględne
refrakcja wzgledna populacja funkcjonalnie czynnych kanałów sodowych jest mniejsza
оқуды бастаңыз
Bezpośrednim skutkiem takiego stanu populacji kanałów sodowych jest zwiększenie wartości depolaryzacji progowej koniecznej do inicjacji potencjału czynnościowego. q
Ważnym czynnikiem przyczyniającym się do powstania zjawiska refrakcji względnej jest
оқуды бастаңыз
zwiększona w tym okresie przepuszczalność błony dla jonów potasowych i związane z tym większe natężenie prądu potasowego.
refrakcja wzgledna Zrównoważenie przez prąd sodowy silniejszego prądu potasowego, co jest konieczne do inicjacji potencjału czynnościowego, będzie wymagało
оқуды бастаңыз
otwarcia większej liczby kanałów sodowych, co także wiąże się z koniecznością zwiększenia siły bodźca
Metoda voltage-clamp​ (​klamra napięciowa​) kontroluje
оқуды бастаңыз
kontroluje ​wartość potencjału błony​ komórkowej za pomocą elektrod wewnątrz- i zewnątrzkomórkowych​. Jest to możliwe dzięki ​przeciwdziałaniu naturalnym prądom jonowym generowanym w procesie regulacji potencjału błony​.
Voltage clamp Obserwowanym parametrem jest
оқуды бастаңыз
prąd jonowy​ przepływający w poprzek błony mierzony w ​mikroamperach​. Metoda ta służy do określania ​kierunku, siły i rodzaju prądów jonowych​, powstałych przy danej wartości potencjału błon
Patch-clamp​
оқуды бастаңыз
wykorzystywana jest wypełniona elektrolitem szklana elektroda. Końcówkę elektrody przykłada się do błony. Powstaje szczelny kontakt z którego wyizolowuje się fragment błony.
Patch-clamp Wyizolowana łatka ​umożliwia
оқуды бастаңыз
badanie właściwości nawet pojedynczego kanału jonowego​. Parametrem obserwowanym jest ​natężenie prądu przepływającego przez wyizolowany fragment błony​. Jego wartość podaje się w ​pikoamperach
Patch-clamp umozliwia
оқуды бастаңыз
Metoda ta umożliwia badania dotycząc​e kinetyki, farmakologii i systematyki kanałów jonowych.
Current clamp
оқуды бастаңыз
Pozwalają na pomiar prądu w przewodzie bez konieczności fizycznego kontaktu z nim lub odłączenia go w celu wprowadzenia przez sondę.
Current clamp
оқуды бастаңыз
Cęgi prądowe są zwykle używane do odczytu wielkości prądu przemiennego, a przy dodatkowym oprzyrządowaniu można także mierzyć fazę i kształt fali.
CURRENT CLAMP jest to metoda
оқуды бастаңыз
metoda wewnątrzkomórkowego rejestrowania wykorzystująca pomiary różnic napięcia wzdłuż błony komórkowej podczas wprowadzania pozytywnych lub negatywnych prądów do komórki o różnej sile.
Current clamp Rejestrowanie napięcia
оқуды бастаңыз
Rejestrowanie napięcia bez wprowadzania prądów lub bez innych zakłóceń wskażą na potencjał błonowy danej komórki (zwykle jest to to -60 do -80 mV w nie pobudzanych neuronach).
Current clamp
оқуды бастаңыз
Jednakże rytmiczne wprowadzanie powtórzonych, stałych impulsów do komórek można uzyskać względną miarę pobudliwości komórki.
Oddziaływanie efaptyczne
оқуды бастаңыз
występuje jeśli dwa neurony są położone wystarczająco blisko siebie. Prądy zewnątrzkomórkowe towarzyszące powstawaniu potencjału czynnościowego na jednym z nich mogą modulować potencjał błony sąsiadującego neuronu.
Oddziaływanie efaptyczne
оқуды бастаңыз
Mogą występować ​efapsy​. W przypadku braku elementu strukturalnego w postaci połączenia ścisłego, komunikację efaptyczną nazywa się ​efektem pola
Synapsy elektryczne​
оқуды бастаңыз
przekaz sygnału między komórkami odbywa się dzięki przepływowi prądu jonowego przez ​połączenia szczelinowe​.
Synapsy elektryczne​ polaczenia szczelinowe
оқуды бастаңыз
W błonach budujących połączenia szczelinowe znajdują się liczne kanały jonowe, które łączą środowiska zewnętrzne komórek. Kanały te są zbudowane z ​dwuch koneksonów​.
Synapsy chemiczne​
оқуды бастаңыз
przewodzenie informacji o zmianie potencjału błony przez szczelinę synaptyczną odbywa się za pośrednictwem substancji chemicznej - neuroprzekaźnika​.
Synapsa chemiczna
оқуды бастаңыз
Synapsa jest utworzona przez komórkę pre- i postsynaptyczną. Przepływ informacji odbywa się tylko w jednym kierunku (budowa błony pre- jest inna niż błony post- ). Brak połączenia strukturalnego.
Wyrzut neuroprzekaźnika w przypadku, gdy dochodzi do pełnej fuzji pęcherzyka z błoną presynaptyczną w procesie egzocytozy ma
оқуды бастаңыз
​charakter kwantowy​ - istnieje najmniejsza objętość neuroprzekaźnika która może być uwolniona. Każda większa objętość byłaby wielokrotnością tej najmniejszej objętości
​. W przypadku​ "kiss and run"
оқуды бастаңыз
wyrzut nie ma charakteru kwantowego​
Wyrzut neuroprzekaźnika w czasie fuzji typu kiss and run podleg
оқуды бастаңыз
regulacji nawet jeśli pęcherzyk jest już połączony z błoną presynaptyczną. Jest to możliwe dzięki ​sieci wymiany jonów​ we wnętrzu pęcherzyka oraz ​kanałów jonowych w jego błonie​.
W momencie fuzji błony pęcherzyka synaptycznego z błoną presynaptyczną zmienia się
оқуды бастаңыз
pot bł pęch; wartość bł presyn. Zmiana potencjału spowoduje otwarcie potencjałozależnych kanałów jonowych w błonie pęcherzyka, co umożliwia napływ do pęcherzyka kationów i​ uwolnienie neuroprzekaźnika z sieci wymiany jonów​.
To w jakim stopniu pęcherzyk będzie opróżniony z neuroprzekaźnika w czasie kiss and run zależy od
оқуды бастаңыз
​czasu trwania fuzji​, ​rodzaju kanałów jonowych w błonie pęcherzyka ​oraz ​od potencjału błony presynaptycznej​ - im większa będzie zmiana pot. błony pęcherzyka, tym więcej kanałów otworzy się
Centralnym elementem sprzężenia elektrowydzielniczego​ jest
оқуды бастаңыз
​zmiana stężenia jonów wapnia​ w aksoplazmie zakończenia synaptycznego. Wzrost ich stęż. inicjuje kaskadę wydarzeń prowadzącą do fuzji pęcherzyków z błoną presynaptyczną.
Wzrost ich stęż. inicjuje kaskadę wydarzeń prowadzącą do fuzji pęcherzyków z błoną presynaptyczną. Stężenie to jest zależne od (ca2_)
оқуды бастаңыз
​liczby otwartych kanałów wapniowych i czasu, w którym są one otwarte​. Większa ​częstotliwość​ ​potencjału czynnościowego spowoduje zwiększenie stężenia jonów wapniowych w zakończeniu synaptycznym.
Im większe stężenie jonów wapniowych, tym
оқуды бастаңыз
więcej czujników wapnia zostanie uaktywnionych, co spowoduje, że większa liczba pęcherzyków ulegnie fuzji z błoną presynaptyczną i uwolni neuroprzekaźnik do szczeliny synaptycznej
Potencjał postsynaptyczny
оқуды бастаңыз
Najistotniejszym elementem budowy błony postsynaptycznej są białka receptorowe oraz kanały jonowe związane funkcjonalnie z receptorami.
Receptory jonotropowe
оқуды бастаңыз
są ​elementem budowy białek kanałowych​ - kanałów ligandozależnych. Przyłączenie neuroprzekaźnika z miejscem receptorowym powoduje otwarcie tych kanałów.
Receptory jonotropowe Charakteryzują się
оқуды бастаңыз
dużą szybkością działania ze względu na brak etapów pośrednich.
receptory jonotropwoe rezultat
оқуды бастаңыз
Rezultatem aktywacji receptorów jonotropowych są ​szybkie potencjały postsynaptyczne​ - ​powstają w bardzo krótkim czasie​ po aktywacji receptorów przez neuroprzekaźnik i​ trwają stosunkowo krótko
Receptory metabotropowe
оқуды бастаңыз
nie jest fizycznie związany z kanałem jonowym - receptor jest samodzielnym integralnym z błoną białkiem. Pojawiają się przez to etapy pośrednie
Rezultatem aktywacji receptorów metabotropowych jes
оқуды бастаңыз
przyłączenie ​przekaźnika drugiego stopnia​ do białka kanałowego lub fosforylacja białka kanałowego przez jedną z kinaz aktywowanych przez przekaźniki drugiego stopnia.
W wyniku aktywacji receptorów metabotropowych powstają
оқуды бастаңыз
​wolne potencjały postsynaptyczne​ - ​powstają z większym opóźnieniem​ i ​trwają znacznie dłużej R
Receptory metabotropowe mogą wpływać
оқуды бастаңыз
nie tylko na typowe ligandozależne kanały jonowe, lecz także na ​stan otwarcia kanałów wyciekowych​ i zmniejszenie przepuszczalności błony dla jonów potasowych.
Depolaryzacja błony postsynaptycznej​ - powstaje w wyniku
оқуды бастаңыз
otwarcia ​kanałów ​sodowo-potasowych (przepuszczalne dla obu jonów w tym samym stopniu) po przyłączeniu się neuroprzekaźnika do miejsca receptorowego. W jej wyniku występuje gwałtowny napływ Na+ do wnętrza i powolne wypływanie K+ na zewnątrz.
Przeważający prąd sodowy, wynikający z
оқуды бастаңыз
większej różnicy między potencjałem równowagowym Na+, a potencjałem spoczynkowym, spowoduje depolaryzację, która kończy się wraz z zamknięciem kanałów sodowo-potasowych ​po dysocjacji neuroprzekaźnika
Zmiana potencjału w postaci depolaryzacji błony jest nazywana
оқуды бастаңыз
​postsynaptycznym potencjałem pobudzającym (EPSP)​. Jest on potencjałem ​lokalnym​. Po dotarciu do ​wzgórka aksonalnego​, jeżeli ma wartość co najmniej progową, może spowodować powstanie ​potencjału czynnościowego​.
Hiperpolaryzacja postsynaptyczna​
оқуды бастаңыз
powstaje zwykle w wyniku otwarcia kanałów przepuszczalnych dla jonów Cl-​, lub ​jonów K+​. W typowej komórce potencjał równowagi dla tych jonów jest ​bardziej ujemny (ok -85mV)​ niż potencjał spoczynkowy.​
Zjawisko AUTORECEPCJI
оқуды бастаңыз
czynnik ograniczający wyrzut neuroprzekaźnika. Na błonie PREsynaptycznej ​mogą znajdować się autoreceptory, których ligandem jest neuroprzekaźnik. Aktywacja tych receptorów powoduje zahamowanie fuzji pęcherzyków z błoną presynaptyczną
Zjawisko autorecepcji ma charakter
оқуды бастаңыз
Mechanizm ten ma charakter sprzężenia zwrotnego ujemnego
Synapsy akso-aksonalne​
оқуды бастаңыз
tworzone przez zakończenie synaptyczne jednego neuronu na buławce synaptycznej drugiego neuronu
Sumowanie w czasie​
оқуды бастаңыз
zwiaz z kom ​postsyn​ pot czynn. Zachodzi w pojedynczej synapsie i jest możliwe dzięki temu, że potencjał postsynaptyczny​ trwa zawsze ​dłużej​, niż ​presynaptyczny​ potencjał czynnościowy, który go wywołał.
Jeżeli czas powstawania kolejnych potencjałów czynnościowych na błonie presynaptycznej będzie wystarczająco krótki
оқуды бастаңыз
(​wysoka częstotliwość potencjału​) to ​dwa potencjały postsynaptyczne nałożą się na siebie - ​ich amplitudy się zsumują​. (sumowanie w czasie)
Sumowanie w przestrzeni​
оқуды бастаңыз
dochodzi do sumowania potencjałów postsynaptycznych z co najmniej dwóch synaps. Synapsy muszą być aktywowane jednocześnie.
Kiedy potencjał lokalny o charakterze depolaryzacyjnym wywołany przez bodziec progowy dotrze do
оқуды бастаңыз
wzgórka aksonalnego i wywoła w pierwszej kolejności ​otwarcie bramek aktywacyjnych kanałów sodowych bramkowanych napięciem​, w rezultacie zacznie przepływać ​dokomórkowy prąd sodowy
​dokomórkowy prąd sodowy powodując dalszą depolaryzację błony komórkowej. Zwiększa się także wtedy
оқуды бастаңыз
​odkomórkowy prąd potasowy​(przeciwdziałając depolaryzacji). Im większa depolaryzacja, tym większe prawdopodobieństwo otwarcia się kanałów sodowych bramkowanych napięciem,
Im większa depolaryzacja, tym większe prawdopodobieństwo otwarcia się kanałów sodowych bramkowanych napięciem, a tym samym
оқуды бастаңыз
większy dokomórkowy prąd sodowy - jest to dodatnie sprzężenie zwrotne zwane​ cyklem Hodkina​.
Potencjał czynnościowy powstaje wtedy gdy
оқуды бастаңыз
zostanie otwarta ​wystarczająca liczba kanałów sodowych​ do uruchomienia dodatniego sprzężenia zwrotnego, żeby wywołać gwałtowną depolaryzację błony komórkowej,
​potencjał czynnościowy powstaje wtedy gdy
оқуды бастаңыз
, natężenie dokomórkowego prądu sodowego jest większe niż natężenie odkomórkowego prądu potasowego
Prąd potasowy przeciwdziała
оқуды бастаңыз
dokomórkowemu prądowi sodowemu, ponieważ zwrot i kierunek prądu potasowego jest odkomórkowy.
Prąd potasowy przez kanały wyciekowe zawsze dąży do
оқуды бастаңыз
wyrównania potencjału błony z potencjałem równowagowym dla jonów potasu, tym samym dąży do powstania potencjału spoczynkowego
Depolaryzacja błony presynaptycznej
оқуды бастаңыз
Zmiana potencjału bł. presynaptycznej jest związana z docierającym do zakończenia synaptycznego potencjałem lokalnym lub czynnościowym.
Depolaryzacja błony postsynaptycznej​.
оқуды бастаңыз
Powstaje w wyniku otwarcia kanałów sodowo-potasowych po przyłączeniu się neuroprzekaźnika do miejsca receptorowego
Zwiększenie przepuszczalności w ​równym stopniu dla jonów sodu i potasu​ powoduje
оқуды бастаңыз
wałtowny napływ​ jonów Na+ do komórki oraz​ powolny wypływ ​jonów potasu​. ​Taka dynamika wynika z tego, że potencjał równowagi dla jonów Na+ znacznie bardziej różni się od potencjału spoczynkowego niż potencjał równowagi jonów K+
Czucie​
оқуды бастаңыз
wykrywanie zmian w środowisku i przewodzenie informacji o tej zmianie do OUN
czucie jest
оқуды бастаңыз
​monomodalne​ - obejmuje tylko jeden rodzaj bodźca i wiąże się ze skupieniem tylko na jego jednej modalności (typie energii z jaką związany jest dany bodziec - każdy receptor z danego narządu zmysłu odbiera określony rodzaj bodźca.
Percepcja​
оқуды бастаңыз
analiza oraz interpretacja bodźca środowiskowego. Zapewnia ​multimodalną analizę bodźców, czyli dzięki bodźcom docierającym z ​różnych narządów zmysłów​ może w dokładniejszy sposób scharakteryzować bodziec oraz go zinterpretować
Bodziec adekwatny
оқуды бастаңыз
Bodziec który aktywuje dany typ receptora sensorycznego nazywany jest ​bodźcem adekwatnym​ dla tego receptora.
Modalność​
оқуды бастаңыз
determinuje, które komórki receptorowe będą reagowały na ten dany bodziec i w związku z tym, do której struktury mózgu informacja o pobudzeniu będzie docierała
Kryterium modalności może
оқуды бастаңыз
podzielić receptory sensoryczne na typy w zależności od rodzaju energii: mechanoreceptory, chemoreceptory, fotoreceptory, termoreceptory.
Intensywność bodźca​
оқуды бастаңыз
kodowana zwykle przez komórkę receptorową w postaci ​amplitudy​ ​potencjału lokalnego​, zwanego w tym przypadku ​POTENCJAŁEM RECEPTOROWYM​.
Potencjał receptorowy po dotarciu do ​wzgórka aksonalnego​
оқуды бастаңыз
może powodować powstanie potencjałów czynnościowych, o ​częstotliwości​, która odzwierciedla ​siłę bodźca​.
Czas trwania bodźca
оқуды бастаңыз
sposób kodowania zależy od typu komórki receptorowej. Wszystkie receptory sensoryczne adaptują się do bodźca, lecz różnią się stopniem i czasem adaptacji.
Potencjał błony komórek receptorowych szybko adaptujących się wraca
оқуды бастаңыз
po pewnym czasie do ​stanu spoczynkowego​ mimo że bodziec nie przestał działać.
​Potencjał receptorowy​ pojawia się
оқуды бастаңыз
ponownie po zakończeniu działania bodźca​. Reakcja komórki receptorowej w tym przypadku jest związana z początkiem i końcem czasu, w którym bodziec działa na receptor.
Reakcja komórki receptorowej w tym przypadku jest związana z początkiem i końcem czasu, w którym bodziec działa na receptor. Takie receptory określa się mianem
оқуды бастаңыз
​receptorów fazowych​. Przykładem jest ciałko Paciniego.
​receptory toniczne
оқуды бастаңыз
Receptory, które ​bardzo wolno adaptują się​ do działania bodźca -
​receptory toniczne​. ​Utrzymują one
оқуды бастаңыз
zwiększoną aktywność elektryczną przez cały czas działania bodźca​. Przykładem jest większość nocyceptorów (receptorów bólu).
Proces adaptacji​ receptora sensorycznego może być związana z
оқуды бастаңыз
z mechanizmami wewnatrzkom albo struktruami zewkom
​mechanizmami wewnątrzkomórkowymi​
оқуды бастаңыз
np. czopki i komórki włoskowate narządu Cortiego
​strukturami zewnątrzkomórkowymi ​
оқуды бастаңыз
​otaczającymi receptor np. ciałka Paciniego w których odkształcenie warstwy tkanki łącznej otaczającej komórkę receptorową powoduje szybką adaptację (usunięcie tkanki łącznej powoduje zmianę tego receptora z fazowego na toniczny).
Długotrwałe wzmocnienie synaptyczne​ powstaje przez
оқуды бастаңыз
akt synapsy przez pot czyn o wys częst co prowadzi do zmian strukturalnych->większa ilość neuroprzekaźnika zostanie uwolniona z zak syn pod wpływem pot czynn o stosunkowo małej częstotliwości
Długotrwałe wzmocnienie synaptyczne zaobserwowaen
оқуды бастаңыз
(zaobserwowane w synapsach pobudzających CA1 hipokampa)
Umiejscowienie bodźca
оқуды бастаңыз
rozpoznawane przez miejsce występowania komórek, który dany bodziec odebrały lub przez analizę na wyższych poziomach układu nerwowego informacji pochodzących z wielu receptorów.
Transdukcja sensoryczna
оқуды бастаңыз
ierwszy etap recepcji, polegający na ​wykorzystaniu energii bodźca na zmianę potencjału błonowego​ komórki receptorowej w postaci ​potencjału receptorowego​.
Transdukcja sensoryczna odbywa sie dzieki
оқуды бастаңыз
Odbywa się dzięki ​zmianie konformacji kanałów jonowych​ w błonie komórki receptorowej (termorecepcja) lub przez kaskadę reakcji​ (fotorecepcja, narząd słuchu).
Zmysł słuchu
оқуды бастаңыз
Fala dźwiękowa - zmiana ciśnienia ośrodka - bodziec mechaniczny Amplituda to głośność
Komórki włoskowate budowa
оқуды бастаңыз
Ich ciało komórkowe jest osadzone w błonie podstawnej, a na jego przeciwstawnym biegunie występuje struktura z cylindrycznych wypustek - ​stereocylia​, a najdłuższa z nich to ​kinocylium​.
Górne części stereociliów tworzą
оқуды бастаңыз
sprezyny bramkujace
Bodziec wywołuje
оқуды бастаңыз
​drgania błony podstawnej​ i przez błonę nakrywkową powoduje ​przechylenie stereociliów​, czego efektem jest ​zwiększenie napięcia sprężyn bramkujących​ i ​otwarcie ​mechanicznych kanałów jonowych​.
sluch;​otwarcie ​mechanicznych kanałów jonowych​ prowadzi do
оқуды бастаңыз
Otwarcie kanałów prowadzi do ​przepływu jonów ​wapnia i potasu​ i powstania potencjału receptorowego
słuch: Otwarcie kanałów potasowych zwykle wywołuje
оқуды бастаңыз
hiperpolaryzację. W przypadku komórek włosowatych narządu Cortiego ich otwarcie powoduje jedynie depolaryzację. Jest to związane ze ​śródchłonką (endolimfą)​, która wypełnia przewód ślimaka
Śródchłonka charakteryzuje się
оқуды бастаңыз
bardzo ​dużym stężeniem jonów ​K+​ co powoduje przesunięcie przesunięcie wartości ​potencjału równowagi dla K+​ ​w kierunku bardziej dodatnim​ i ​napływ ​tego jonu ​do wnętrza​ komórki.
sluch Napływające ​Ca2+​
оқуды бастаңыз
również wpływają na ​depolaryzację​ ale przyczyniają się także do ​adaptacji receptora​. Adaptacja polega na ​zmniejszeniu napięcia mechanicznych filamentów łączących stereocilia​.
Po napłynięciu do wnętrza stereociliów ​jony wapnia
оқуды бастаңыз
łączą się z ​KALMODULINĄ​ przez którą aktywują miozynę 1Beta​.
sluch ​Miozyna 1B
оқуды бастаңыз
powoduje odkształcenie górnych części stereocyliów, które prowadzi do zmniejszenia napięcia sprężyn bramkujących​ i zamknięcia się części kanałów mechanicznych związanych z procesem transdukcji.
Czopki i pręciki - ich ciało komórkowe
оқуды бастаңыз
dzieli się na 3 części: segment zewnętrzny, segment wewnętrzny i zakończenia synaptyczne.
czopki i preciki ​Segment zewnętrzny
оқуды бастаңыз
zawiera charakterystyczne struktury błonowe: ​dyski cytoplazmatyczne w pręcikach i pofałdowania błony komórkowej w czopkach​. Ich obecność zwiększa liczbę cząsteczek barwników znajdujących się w jednej komórce
​dyski cytoplazmatyczne w pręcikach i pofałdowania błony komórkowej w czopkach W błonach tych struktur znajdują się
оқуды бастаңыз
barwniki światłoczułe zbudowane z ​retinolu ​i ​białka opsyny​.
Potencjał spoczynkowy fotoreceptorów
оқуды бастаңыз
jest stosunkowo mało ujemny (ok -40 mV). Taka wartość wynika z dużej spoczynkowej przepuszczalności błony fotoreceptorów dla jonów ​K+ ​oraz ​Na+​.
Fotoreceptory Duża przepuszczalność błony dla ​jonów potasowych​ wynika z
оқуды бастаңыз
wynika z dużej liczby kanałów wyciekowych potasowych w ​segmencie wewnętrznym​, a na ​spoczynkowy prąd sodowy​ wpływają ​zależne od cGMP kanały sodowe​ skoncentrowane w błonie komórkowej ​segmentu zewnętrznego​.
Ze względu na występowanie tych dwóch typów kanałów w błonie fotoreceptorów przez błonę przepływa
оқуды бастаңыз
odkomórkowy prąd potasowy​ i ​dokomórkowy prąd sodowy​. Prąd ten nazywany jest ​prądem ciemnym​, ponieważ występuje gdy fotoreceptory są w ciemności
Skład chemiczny jest regulowany... fotoreceptory
оқуды бастаңыз
działaniem ​pompy sodowo-potasowej​ znajdującej się w dużej gęstości w błonie komórkowej ​segmentu wewnętrzneg
fotoreceptory Stosunkowa mało ujemna wartość potencjału spoczynkowego powoduje, że
оқуды бастаңыз
w st spocz ​kan ca znajdujące się w ​bł zak syn są ciągle ​otwarte​. Konsekwencją tego jest ciągły wyrzut neuroprzekaźnika - ​kwasu glutaminowego​ - do szczeliny synaptycznej (synapsa fotoreceptor - komórka dwubiegunowa siatkówki).
Podobnie jak we włoskowatych komórkach węchowych, w fotoreceptorach
оқуды бастаңыз
​ nie powstają potencjały czynnościowe​
Wzrok transdukcja rozpoczyna sie
оқуды бастаңыз
przekształceniem ​retinalu 11-cis​ w ​retinal trans​ pod wpływem bodźca świetlnego. ​W pręcikach retinal jest elementem budulcowym rodopsyny​, w której jest związany z białkiem opsyną.
Zmiana konformacji izomerycznej retinalu prowadzi do
оқуды бастаңыз
powstania niestabilnej formy rodopsyny - metarodopsyny​, która rozpada się na ​opsynę ​i ​trans-retinal​.
Fotoaktywacja rodopsyny prowadzi do
оқуды бастаңыз
aktywacji białek G - ​transducyny​, a ta wpływa na aktywację fosfodiesterazy cGMP​ - enzymu rozkładającego cykliczny GMP
W rezultacie ​zwiększenia aktywności aktywności tej fosfodiesteraz
оқуды бастаңыз
​ zmniejsza się stężenie cGMP​, co powoduje ​zamykanie zależnych od cGMP kanałów sodowych​ i ​zmniejszenie przepuszczalności błony dla jonów Na+
​zamykanie zależnych od cGMP kanałów sodowych​ i ​zmniejszenie przepuszczalności błony dla jonów Na+​. Przepuszczalność błony dla jonów ​K+​
оқуды бастаңыз
nie uległa zmianie, więc potencjał błony fotoreceptora staje się bardziej ujemny - dochodzi do powstania potencjału receptorowego, który ma charakter ​hiperpolaryzacji (do -70 mV).
fotoreceptory Zwiększenie ujemności potencjału błony prowadzi do
оқуды бастаңыз
zamknięcia potencjałozależnych kanałów wapniowych błony presynaptycznej i zahamowanie wyrzutu kwasu glutaminowego.
Przekaz informacji o bodźcu świetlnym odbywa się przez
оқуды бастаңыз
zahamowanie aktywności synapsy znajdującej się między receptorem a komórką dwubiegunową siatkówki.
Kanały transdukcyjne
оқуды бастаңыз
kanały jonowe zaangażowane w procesy transdukcji.
Adaptacja
оқуды бастаңыз
Część procesów dostosowania wzroku do nowych warunków świetlnych jest związana ze zmianami w innych niż fotoreceptory elementach budowy oka (np. zwężanie lub rozszerzanie źrenic).
Adaptacja Bardzo istotna część zmian odbywa się na
оқуды бастаңыз
na poziomie komórek receptorowych. Zmiany adaptacyjne w fotoreceptorach są możliwe dzięki oddziaływaniu jonów wapnia na metabolizm cGMP. Ca2+ hamują aktywność ​cyklazy guanylowej​ - enzymu przekształcającego​ GTP​ w ​cykliczne GMP​.
Konsolidacja polega na
оқуды бастаңыз
długotrwałych zmianach neurofizjologicznych, skutkujących łatwiejszym wpływem neuronów na sąsiednie komórki nerwowe, bądź na zmianie ilości neuroprzekaźników, bądź też na wzroście ilości połączeń synaptycznych między neuronami.
Prawo Coulomba mówi, że
оқуды бастаңыз
siła wzajemnego oddziaływania dwóch punktowych ładunków elektrycznych jest wprost proporcjonalna do iloczynu tych ładunków i odwrotnie proporcjonalna do kwadratu odległości między nimi.
Prawo Ohma
оқуды бастаңыз
Proporcjonalność natężenia prądu płynącego przez przewodnik do napięcia panującego między końcami przewodnika.
Dyfuzja
оқуды бастаңыз
proces samorzutnego rozprzestrzeniania się cząsteczek w danym ośrodku (np. w gazie, cieczy lub ciele stałym), będący konsekwencją chaotycznych zderzeń cząsteczek dyfundującej substancji między sobą i/lub z cząsteczkami otaczającego ją ośrodka.
Efektem dyfuzji w gazach i cieczach jest
оқуды бастаңыз
wyrównywanie się stężeń wszystkich składników w całej objętości fazy. Dyfuzja prowadzi do wyrównania się stężeń. Proces dyfuzji opisują prawa Ficka.
Synapsa elektryczna​ występuj
оқуды бастаңыз
am gdzie jest wymagane szybkie przekazywanie informacji. W synapsie tej obowiązuje zasada jeden do jednego – zjawisko które jest obecne na błonie presynaptycznej jest identyczne do tego jakie się pojawi na błonie postsynaptycznej;
w synapsie elektrycznej nie ma takich zjawisk jak
оқуды бастаңыз
hamowanie pre- czy postsynaptyczne, sumowanie w czasie lub przestrzeni (są one możliwe tylko wtedy, gdy występuje zmiana natury informacji
Synapsa chemiczna​ jest przykładem
оқуды бастаңыз
komunikacji międzykomórkowej pośredniej parakrynnej.
Uwolnienie neuroprzekaźnika jest zależne od
оқуды бастаңыз
wzrostu stężenia jonów wapniowych w kolbie synaptycznej, więc potencjał czynnościowy powinien otworzyć kanały wapniowe bramkowane napięciem (obecne w błonie kolby synaptycznej), przez które jony zaczną dyfundować do kolby synaptycznej

Пікір қалдыру үшін жүйеге кіру керек.